Category Archives: energy and agriculture

There is 3 Percent Less Energy in our Gasoline Supply with Added Ethanol

I cannot figure out why there isn’t a greater backlash from the U.S. citizen about our nation’s ethanol policy. While the world’s food and agricultural journalists are in a constant toot about food waste and how to prevent it, they don’t seem to notice that we are wasting the production from some of the best farmland in the world, the American Midwest, by burning massive amounts of corn for fueling our vehicles.

The environmental consequences are also enormous. This policy is causing alarming losses of soil from this rich productive region, it is a large reason behind the fertilizer run-off that creates the Dead Zone in the Gulf, and the policy has also led to a sad loss of monarch’s, songbirds, and biodiversity.

The EPA made a small move towards sanity when it attempted to reduce the mandates set above the blend wall, but now it has failed to follow-through, at least until after this November’s election, it would appear.

This U.S. policy is mandated food waste.

And it is less energy in your gas tank.

From the U.S. Energy Information Association:
Increasing ethanol use has reduced the average energy content of retail motor gasoline

EIA has adjusted its estimates of the energy content of retail motor gasoline in the Monthly Energy Review (MER) to reflect its changing composition. Ethanol and other oxygenates, which have lower energy content than petroleum-based gasoline components, have seen their share of total gasoline volumes increase from 2% in 1993 to nearly 10% in 2013. As a result, EIA’s estimate of motor gasoline’s average energy content per gallon has declined by about 3% over this 20-year period.


How Much Energy is Required to Grow and Harvest Various Crops and How Much Does it Cost?

Some like to say that food equals fossil fuel energy, and while I disagree with that over-simplification, we cannot deny that modern day agricultural methods rely upon fossil fuels. Today’s post comes from the U.S. Energy Information Administration. It breaks down some energy input numbers using data from the USDA as well as the EIA. Interestingly, it also compares energy inputs for growing crops to energy inputs for producing livestock. –Kay M.

Energy for growing and harvesting crops is a large component of farm operating costs

graph of operating expense for various crops, as explained in the article text

The U.S. agriculture industry used nearly 800 trillion British thermal units (Btu) of energy in 2012, or about as much primary energy as the entire state of Utah. Agricultural energy consumption includes energy needed to grow and harvest crops and energy needed to grow livestock. Crop operations consume much more energy than livestock operations, and energy expenditures for crops account for a higher percentage of farm operating costs.

Agricultural energy consumption includes both direct and indirect energy consumption. Direct energy consumption includes the use of diesel, electricity, propane, natural gas, and renewable fuels for activities on the farm. Indirect energy consumption includes the use of fuel and feedstock (especially natural gas) in the manufacturing of agricultural chemicals such as fertilizers and pesticides.

Energy makes up a significant part of operating expenditures for most crops, especially when considering indirect energy expenditures on fertilizer, because the production of fertilizer is extremely energy-intensive, requiring large amounts of natural gas. For some crops like oats, corn, wheat, and barley, energy and fertilizer expenditures combined make up more than half of total operating expenses. The proportion of direct to indirect energy use varies by crop. For example, corn, which is also used as an energy input for ethanol production, has relatively low direct fuel expenditures but has the highest percentage of fertilizer expenditures.

graph of U.S. direct energy consumption for crops and livestock, as explained in the article text

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014

The energy consumed in livestock operations is almost solely direct energy consumption and is relatively low compared with crop operations, both as a percentage of total operating expenditures and on a total energy basis. Livestock operations consume direct energy for ventilation systems, refrigeration, lighting, heating, watering, motors, and waste handling, whereas crop operations use energy to plant, harvest, irrigate, and dry crops. The energy consumed in the production of livestock feed is not included in this analysis of livestock energy consumption.

Distillate fuel is the dominant fuel for direct energy consumption for both livestock and crop operations. Distillate is used for crop tilling, harvesting, weed control, and other operations that require heavy machinery. Crop drying is another fuel-intensive farm activity, and the amount of fuel used varies by the type of crop and its moisture content. High-temperature dryers are powered by either electricity or propane.

Supplying water can also be an energy-intensive task. Although some farms have access to public water supplies, most farms pump water from wells and groundwater sources. Most pumping is done with electricity, but pumps in remote locations may use diesel or propane.

The chemicals used by the agricultural industry are a subset of the bulk chemical industry and include fertilizers and pesticides. Nitrogenous (ammonia-based) fertilizers require large amounts of natural gas as a feedstock and provide heat and power for processing. EIA’s 2010 Manufacturing Energy Consumption Survey estimates that the U.S. nitrogenous fertilizer industry consumed more than 200 trillion Btu of natural gas as feedstock in 2010 and another 152 trillion Btu for heat and power.

In addition to being major energy consumers, some farms are using renewable resources to produce energy. Wind turbines, methane digesters, and photovoltaics are the most common on-farm renewables. Renewable energy can help to offset the need for purchased energy. In some cases, the renewable energy produced on farms is sold to electric power suppliers, providing additional income for farmers.

Principal contributor: Susan Hicks

What IF We Have Fusion Ten Years From Now? Here are 12 Possibilities.

Nuclear fusion has always been the dream of scientists as an ideal energy source, but has so far been elusive after many decades of work. However, two days ago, Lockheed Martin reported that it would have successful nuclear fusion available in a small-sized unit platform about ten years from now.


Skunk Works Compact Fusion Site at Lockheed Martin
Reuters Article on Scientific American: Lockheed Claims Breakthrough on Fusion Energy
Forbes: Lockheed Martin Claims Fusion Breakthrough That Could Change World Forever

If this is true it will change the world as we know it. On the other hand, claims of fusion have always existed somewhere off in the distant future. Is this time any different? We don’t know, but it’s worth considering how it could change the world if this announcement becomes the real deal.

Here are twelve likelihood’s.

1. Desalinated water would become cheap. The deserts of the world could become the farm regions for the world – if located near the sea. Warm regions could grow food year-round. Water woes would be mostly forgotten about and more people could locate in climates which are desirable but currently restricted by water supply. California’s water woes would be gone. So would the Middle East’s.

2. This would be a totally disruptive technology. We would no longer need the grid and would instead have distributed power. Transportation would go fuel cell, electric, and hybrid. We’d have much less need for today’s fossil fuels such as oil, coal, and natural gas and could greatly reduce human induced CO2 emissions. We wouldn’t need wind generators, either. Some solar photovoltaic might still be useful. Buildings which are heated with natural gas could be heated with electricity instead. Air conditioning and refrigeration would become cheap.

3. There would be no need for biofuels. Ships would be powered with fusion units. There is speculation that we could have unlimited flight time for airplanes, too.

4. Regions which are currently being farmed could be returned to the wild.

5. Urbanization could continue with much greater confidence. Today’s ideas of city greenhouses and hydroponic growing centers would be far more feasible with cheap available water and energy, especially along the coastlines.

6. Farms would continue to industrialize, but in modern technical ways, as opposed to today’s political-corporate ways. Tractors and combines would be powered by fuel cells. Fusion could be the energy source for producing nitrogen fertilizer.

7. Most of the developing world could advance far more rapidly if fusion becomes available. Computers, robots and technology would continue to advance at an unprecedented pace. Medical advances and longevity advances would be included.

8. Leisure time for humans would become a greater reality. Some economists already believe that it will become necessary to pay people to “exist” because jobs are not available as we become more efficient, as we use more and more robots, and as computers and communications continue to eliminate jobs. We’d need even fewer people to produce food and basic goods. New models would be needed which would pay people to be artists and service workers and other types of meaningful contributors to society. Economies should do well if cheap energy is available reliably since expensive energy is akin to a tax on industrialized nations, though they’d need to adjust to this disruption.

9. Population would continue to grow and grow with fewer limits to growth. Would we finally have the political will to place a value on the natural world and on biodiversity? Would pollution become our greatest problem, then, or could fusion help us to get rid of pollution? Perhaps it could.

10. We wouldn’t need hydropower anymore, so rivers could be undammed.

11. Perhaps every region or nation could become food secure.

12. Increased globalization: The world would become even smaller. So might the Universe. There would be a greater chance for peace. So be it.

What DO YOU think would happen?

Photo credit: Lockheed Martin.