Category Archives: energy and agriculture

There is 3 Percent Less Energy in our Gasoline Supply with Added Ethanol

I cannot figure out why there isn’t a greater backlash from the U.S. citizen about our nation’s ethanol policy. While the world’s food and agricultural journalists are in a constant toot about food waste and how to prevent it, they don’t seem to notice that we are wasting the production from some of the best farmland in the world, the American Midwest, by burning massive amounts of corn for fueling our vehicles.

The environmental consequences are also enormous. This policy is causing alarming losses of soil from this rich productive region, it is a large reason behind the fertilizer run-off that creates the Dead Zone in the Gulf, and the policy has also led to a sad loss of monarch’s, songbirds, and biodiversity.

The EPA made a small move towards sanity when it attempted to reduce the mandates set above the blend wall, but now it has failed to follow-through, at least until after this November’s election, it would appear.

This U.S. policy is mandated food waste.

And it is less energy in your gas tank.

From the U.S. Energy Information Association:
Increasing ethanol use has reduced the average energy content of retail motor gasoline

EIA has adjusted its estimates of the energy content of retail motor gasoline in the Monthly Energy Review (MER) to reflect its changing composition. Ethanol and other oxygenates, which have lower energy content than petroleum-based gasoline components, have seen their share of total gasoline volumes increase from 2% in 1993 to nearly 10% in 2013. As a result, EIA’s estimate of motor gasoline’s average energy content per gallon has declined by about 3% over this 20-year period.


How Much Energy is Required to Grow and Harvest Various Crops and How Much Does it Cost?

Some like to say that food equals fossil fuel energy, and while I disagree with that over-simplification, we cannot deny that modern day agricultural methods rely upon fossil fuels. Today’s post comes from the U.S. Energy Information Administration. It breaks down some energy input numbers using data from the USDA as well as the EIA. Interestingly, it also compares energy inputs for growing crops to energy inputs for producing livestock. –Kay M.

Energy for growing and harvesting crops is a large component of farm operating costs

graph of operating expense for various crops, as explained in the article text

The U.S. agriculture industry used nearly 800 trillion British thermal units (Btu) of energy in 2012, or about as much primary energy as the entire state of Utah. Agricultural energy consumption includes energy needed to grow and harvest crops and energy needed to grow livestock. Crop operations consume much more energy than livestock operations, and energy expenditures for crops account for a higher percentage of farm operating costs.

Agricultural energy consumption includes both direct and indirect energy consumption. Direct energy consumption includes the use of diesel, electricity, propane, natural gas, and renewable fuels for activities on the farm. Indirect energy consumption includes the use of fuel and feedstock (especially natural gas) in the manufacturing of agricultural chemicals such as fertilizers and pesticides.

Energy makes up a significant part of operating expenditures for most crops, especially when considering indirect energy expenditures on fertilizer, because the production of fertilizer is extremely energy-intensive, requiring large amounts of natural gas. For some crops like oats, corn, wheat, and barley, energy and fertilizer expenditures combined make up more than half of total operating expenses. The proportion of direct to indirect energy use varies by crop. For example, corn, which is also used as an energy input for ethanol production, has relatively low direct fuel expenditures but has the highest percentage of fertilizer expenditures.

graph of U.S. direct energy consumption for crops and livestock, as explained in the article text

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014

The energy consumed in livestock operations is almost solely direct energy consumption and is relatively low compared with crop operations, both as a percentage of total operating expenditures and on a total energy basis. Livestock operations consume direct energy for ventilation systems, refrigeration, lighting, heating, watering, motors, and waste handling, whereas crop operations use energy to plant, harvest, irrigate, and dry crops. The energy consumed in the production of livestock feed is not included in this analysis of livestock energy consumption.

Distillate fuel is the dominant fuel for direct energy consumption for both livestock and crop operations. Distillate is used for crop tilling, harvesting, weed control, and other operations that require heavy machinery. Crop drying is another fuel-intensive farm activity, and the amount of fuel used varies by the type of crop and its moisture content. High-temperature dryers are powered by either electricity or propane.

Supplying water can also be an energy-intensive task. Although some farms have access to public water supplies, most farms pump water from wells and groundwater sources. Most pumping is done with electricity, but pumps in remote locations may use diesel or propane.

The chemicals used by the agricultural industry are a subset of the bulk chemical industry and include fertilizers and pesticides. Nitrogenous (ammonia-based) fertilizers require large amounts of natural gas as a feedstock and provide heat and power for processing. EIA’s 2010 Manufacturing Energy Consumption Survey estimates that the U.S. nitrogenous fertilizer industry consumed more than 200 trillion Btu of natural gas as feedstock in 2010 and another 152 trillion Btu for heat and power.

In addition to being major energy consumers, some farms are using renewable resources to produce energy. Wind turbines, methane digesters, and photovoltaics are the most common on-farm renewables. Renewable energy can help to offset the need for purchased energy. In some cases, the renewable energy produced on farms is sold to electric power suppliers, providing additional income for farmers.

Principal contributor: Susan Hicks

What IF We Have Fusion Ten Years From Now? Here are 12 Possibilities.

Nuclear fusion has always been the dream of scientists as an ideal energy source, but has so far been elusive after many decades of work. However, two days ago, Lockheed Martin reported that it would have successful nuclear fusion available in a small-sized unit platform about ten years from now.


Skunk Works Compact Fusion Site at Lockheed Martin
Reuters Article on Scientific American: Lockheed Claims Breakthrough on Fusion Energy
Forbes: Lockheed Martin Claims Fusion Breakthrough That Could Change World Forever

If this is true it will change the world as we know it. On the other hand, claims of fusion have always existed somewhere off in the distant future. Is this time any different? We don’t know, but it’s worth considering how it could change the world if this announcement becomes the real deal.

Here are twelve likelihood’s.

1. Desalinated water would become cheap. The deserts of the world could become the farm regions for the world – if located near the sea. Warm regions could grow food year-round. Water woes would be mostly forgotten about and more people could locate in climates which are desirable but currently restricted by water supply. California’s water woes would be gone. So would the Middle East’s.

2. This would be a totally disruptive technology. We would no longer need the grid and would instead have distributed power. Transportation would go fuel cell, electric, and hybrid. We’d have much less need for today’s fossil fuels such as oil, coal, and natural gas and could greatly reduce human induced CO2 emissions. We wouldn’t need wind generators, either. Some solar photovoltaic might still be useful. Buildings which are heated with natural gas could be heated with electricity instead. Air conditioning and refrigeration would become cheap.

3. There would be no need for biofuels. Ships would be powered with fusion units. There is speculation that we could have unlimited flight time for airplanes, too.

4. Regions which are currently being farmed could be returned to the wild.

5. Urbanization could continue with much greater confidence. Today’s ideas of city greenhouses and hydroponic growing centers would be far more feasible with cheap available water and energy, especially along the coastlines.

6. Farms would continue to industrialize, but in modern technical ways, as opposed to today’s political-corporate ways. Tractors and combines would be powered by fuel cells. Fusion could be the energy source for producing nitrogen fertilizer.

7. Most of the developing world could advance far more rapidly if fusion becomes available. Computers, robots and technology would continue to advance at an unprecedented pace. Medical advances and longevity advances would be included.

8. Leisure time for humans would become a greater reality. Some economists already believe that it will become necessary to pay people to “exist” because jobs are not available as we become more efficient, as we use more and more robots, and as computers and communications continue to eliminate jobs. We’d need even fewer people to produce food and basic goods. New models would be needed which would pay people to be artists and service workers and other types of meaningful contributors to society. Economies should do well if cheap energy is available reliably since expensive energy is akin to a tax on industrialized nations, though they’d need to adjust to this disruption.

9. Population would continue to grow and grow with fewer limits to growth. Would we finally have the political will to place a value on the natural world and on biodiversity? Would pollution become our greatest problem, then, or could fusion help us to get rid of pollution? Perhaps it could.

10. We wouldn’t need hydropower anymore, so rivers could be undammed.

11. Perhaps every region or nation could become food secure.

12. Increased globalization: The world would become even smaller. So might the Universe. There would be a greater chance for peace. So be it.

What DO YOU think would happen?

Photo credit: Lockheed Martin.

Hopes for Algae Biodiesel are Fading

For all of the hope surrounding algae biofuels, surrounding Craig Venter’s big algae project, and then, surrounding Sapphire – one of the last algae games left in town, we get news that Sapphire Energy’s CEO has been replaced. Some read this as a significant and negative sign.

It would seem that we’ve been putting a lot of false hope into algae as a “sustainable” savior for liquid fuels. The requirements to grow it and to get it to produce oil are not so little as it turns out. Nor can living cells be manipulated to produce a lot without requiring a lot in return.

A new emphasis may be emerging from fledgling algae start-ups, and that is to produce an Omega-3 oil human nutrient product instead of crude oil, something that might actually be a profitable venture.

I’ve had a post on the back burner for a very long time, and this seems like a good time to run it. Captain T. A. “Ike” Kiefer wrote a paper titled “Twenty-First Century Snake Oil: Why the United States Should Reject Biofuels as Part of a Rational National Security Energy Strategy” in January 2013. I liked all of it, but I especially liked the part about algae for biodiesel.

The remainder of this post is the excerpt on algae for biodiesel, written by Kiefer and republished with his permission.
—Kay M.

A third option, besides growing a plant for its starches or cellulose, is to grow it directly for oil. Species which yield some biomass as lipids include soy, camelina, rapeseed, oil palm, jatropha, peanut, sunflower, cottonseed, safflower, and microalgae. All of these crops, including a non-poisonous Mexican variant of jatropha, have provided human and animal food over the centuries. The natural lipids in these plants can be broken down by adding methanol (made from natural gas) to convert them into a soup of fatty-acid methyl esters (FAME) commonly known as “biodiesel.”

Lipid fractions of plants are generally small compared to starch fractions, and that is why soy biodiesel yields per acre are much smaller than corn ethanol yields (70 gal/acre v. 500 gal/acre) and consume so much more water per liter of fuel, as will be discussed later. Soy Biodiesel EROI calculated from rigorous, full commercial-scale lifecycle studies is slightly better than corn ethanol at 1.9:1, but still nowhere close the 6:1 threshold for minimal utility. The well- known oil fraction limitation of terrestrial plants is why there has been 80 years of research on fast-growing, higher lipid fraction micro-algae as a way to get a high- yield biodiesel crop.

Algae is the only biodiesel crop with high enough potential yields to replace US petroleum without consuming all US territory as cropland, so it is worth a detailed look. All plants, including algae, stubbornly want to produce carbohydrate structural biomass instead of lipids because that is how they grow and reproduce. Lipids are an intermediate synthesis product that are only accumulated in larger amounts when the plant is starved of some essential nutrient such as nitrogen or silicon essential to complete biosynthesis of new structural biomass.

Lipid yield in g/m2 of pond or bioreactor surface area is a function of the number of algae cells and their individual lipid fractions. Absolute yield is limited because one can either starve the algae to produce more oil or feed them to foster reproduction, but not both—another catch-22. In addition, lipid fraction controls buoyancy for algae. It cannot be increased beyond the point where the algae float to the surface, crowd out the sunlight, dry out, and die. These are physical and biological limits known from previous research under the Aquatic Species Program. It is not possible to change basic physical laws such as Archimedes’ principle of buoyancy with even the most sophisticated genetic engineering.

Additionally, attempts to move algae from the lab bench to commercialization continue to be crushed by poor EROI. A literature survey of reported algae EROIs performed by the National Research Council found values from 0.13:1 to 7:1, but in the higher cases, energy credits from co-products dwarfed the energy delivered as biodiesel—biodiesel was really the co-product and solid biomass the product.

If there is any benefit and profit to be made from algae, it appears to be more in producing soylent green than in producing green fuel. A critical look at the more optimistic studies that predict the higher EROIs reveals that they depend upon a host of unrealistic assumptions—massive supplies of free water and nutrients, a free pass on enormous environmental impact, and market economics that miraculously transform the huge burden of enormous accumulations of soggy byproduct biomass that has per-ton value less than the cost of transportation into a cash commodity crop. Proponents often claim that algae need only sunlight and CO2 to grow.

However, to make the high yields promised, fertilizer energy is typically supplied in the nitrogen, carbon, and hydrogen molecules of a solid form of ammonia called urea. Solazyme Inc., the US Navy’s choice for algae biofuel and recipient of a $21 million DoE biorefinery grant, actually grows their product in dark bioreactors, feeding it carbon and hydrogen energy in the form of sugar. This makes them unique in producing a biofuel 100% dependent upon a food crop and getting 0% of its energy from the sun via direct photosynthesis—a worst case scenario.

The most realistic, full-scale, full commercial lifecycle studies find a break- even 1:1 EROI if the algae biomass is simply sun-dried and shoveled directly into a furnace for heat. Any attempt to convert to liquid fuel results in a large negative energy balance. Hydrotreating further destroys EROI, as can be seen in prices paid by the US Navy for algae biofuels below. The simple but decisive math is that, even at commercial scale, with generous assumptions about cellular reproduction rate and lipid fraction and oil extraction, and ignoring the costs of facilities and water, Argonne National Laboratory calculated that it takes 12 times as much total energy and 2.6 times as much fossil fuel energy to put a gallon of non-hydrotreated biodiesel in a gas station pump instead of a gallon of petroleum diesel.


Under the heading “The Mineral Problem”, Captain T. A. “Ike” Kiefer has some more important comments about algae for biodiesel:

Exchanging a fuel dependent upon foreign oil imports for a fuel dependent upon foreign mineral import does not improve national security.

Potash and phosphate are critical plant macro-nutrient minerals which must be provided in large quantities for both food and biofuel cultivation. The United States currently imports 85% of its potash supply. In 2011 the global price of potash doubled, sending fertilizer prices skyrocketing. In 2010 America imported 13% of its phosphate, and 90% of this came from Morocco, an Islamic kingdom of the North African Maghreb region that is a growing stronghold of Al Qaeda. In 2011, phosphate prices jumped $60 per ton.

Replacing US transportation fuel with algae biodiesel would require about 88 million more tons of phosphate rock to be mined a year compared to current US production of 28.4 million tons and total global production of 191 million tons. While there is a loud chorus of pundits preaching doom about the price volatility of oil and US dependence upon unstable Persian Gulf nations (source of 13% of US crude in 2011), few are those who recognize how susceptible US agriculture is to foreign economic influences.

Basing our transportation energy supply on agriculture via biofuels only exacerbates this risk. It is critically important for energy strategists and policy makers to realize that exchanging a fuel dependent on foreign crude oil imports for a fuel dependent on foreign potash and phosphate imports does not improve national security. In fact, it puts both food and fuel in jeopardy of a single embargo.

There is much more of value in the paper…

Source: “Twenty-First Century Snake Oil: Why the United States Should Reject Biofuels as Part of a Rational National Security Energy Strategy” by Captain T. A. “Ike” Kiefer (JAN 2013):