Category Archives: SRI rice

An Interview with Cornell’s Dr. Erika Styger about the System of Crop Intensification (SRI-Rice)


Mechanical weeding in a rice field using SRI in Punjab, India. Photo credit: Cornell SRI-Rice.

K.M.: The following is a rare, up-to-date, and exceptional interview of the very busy Dr. Erika Styger, Director of the SRI International Network and Resources Center (SRI-Rice) of Cornell University, about the System of Rice (or Crop) Intensification.

Q: Let’s start out by explaining what SRI is, because many people still have never heard of it, even though the techniques have been known for many years.

The System of Rice Intensification, known as SRI is an agro-ecological methodology for increasing the productivity of irrigated rice by changing the management of plants, soil, water and nutrients. SRI originated in Madagascar in the 1980s and is based on the cropping principles of significantly reducing plant population, improving soil conditions and irrigation methods for root and plant development, and improving plant establishment methods.

The benefits of SRI have been demonstrated in over 50 countries and include: 20%-100% or more increased yields, up to a 90% reduction in required seed, and up to 50% water savings. SRI principles and practices have been adapted for rainfed rice as well as for other crops (such as wheat, sugarcane and teff, among others), with yield increases and associated economic benefits.

SRI, or the System of Rice Intensification has made a big difference in the lives of 4-5 million smallholder farmers world wide. It is a system which offers a good way to develop more productive agriculture while using ecological methods. SRI is an “open-source” method with no ownership and no patents.

There is no money to be made by large industry and companies, just the farmers. Farmers can tell you how well it has worked for them; they are the experts with this system. With a bottom-up solution like this, it is evident that it takes more time to be known. There is also still little funding going towards spreading the knowledge about SRI, supporting farmers and collecting and learning from the success stories from the field. It’s the best innovation you never heard about.

Q: The System of Rice Intensification (SRI), which is also called the System of Crop Intensification (SCI), or the System of Root Intensification (SRI), has had great success among small shareholder farmers in many countries around the world. Please describe the various directions being taken with the knowledge of SRI.

SRI was developed through a multi-year observation process and through tests by Father de Laulanie, a French Jesuit missionary in Madagascar in the early 1980s. He synthesized the combination of practices that he called, in French, “le Système de Riziculture Intensive” or SRI. Since the late 1990s, SRI has been validated outside of Madagascar and spread quickly to many countries in Asia, Africa, and Latin America. An essential result was that the applied SRI methodology resulted in improved yields with less inputs in all of the different climates where rice is grown. Since 2005, SRI farmers and technicians, intrigued by the concept of SRI, started to apply the SRI principles to other crops, and thus the System of Crop Intensification (or SCI) emerged through innovation processes directly from the field.

SCI has created very good results with other cereal crops such as finger millet, wheat, the Ethiopian teff, but also with sugar cane, legumes, and vegetable crops. We use ‘SCI’ as a generic term for all other crops besides rice. For a specific crop the term is adapted, for example for wheat, System of Wheat Intensification or SWI is used. The term System of Root Intensification was coined in India, indicating the importance of the root system growth in developing a healthy and productive agriculture. As SRI is a non-proprietary, open-source methodology, new terms are created especially in local languages that often reflect how people relate to the SRI method.

This is fine and we don’t like to comment or insist how people should use the terminology. At SRI-Rice, we decided to keep with the traditional term SRI (System of Rice Intensification) and apply SCI (System of Crop Intensification) as a collective term for all other crops. We also use the acronyms for specific crops, such as SWI for wheat.


Afghanistan rice field – marking planting grid. Photo credit: Cornell SRI-Rice.

Q: While use of the system increases production for farmers, it is still labor intensive. Please comment on the tools, small machinery advancements, and labor involved in using the System of Rice Intensification.

SRI was developed in smallholder farming conditions, which are based until today on manual labor. The optimal use of the recommended SRI practices involves changes in labor allocation and labor use for the different crop management steps, starting from soil preparation, to nursery establishment and management, transplanting, weeding, and fertilization, as well as water management. Being efficient in labor use is always of concern.

If SRI is more labor demanding or not depends on the type of rice cropping system we start out with. There is of course a learning curve for changing the cultivation practices, which takes time and can make SRI in the beginning more time consuming. Once farmers get used to the SRI system, labor requirements are often reduced, and even cited as one of the reasons why farmers adopt SRI – for instance in India. In areas with very small plot sizes and where rural labor is available, farmers have little problems to switch to SRI. Where labor is expensive and rural workers find better paying jobs outside of agriculture, the development and use of tools and machines becomes an important factor. Also, in areas with a lot of land, e.g. some places in Africa, farmers are restricted to the available family labor in how much land they cultivate.

With simple tools or machines, farmers would be able to plant larger areas. In areas that are already highly mechanized, such as Latin America, it is a question of developing the right machines, or SRI will not have a chance to be adopted. Another case is Northern Haiti, where rice farming is in the hands of old men. Labor is available but it is not economical to pay for it as the margins of rice production are very small. With higher benefits from the SRI system, rice production can suddenly interest the younger generation to reconsider agriculture. Thus each region and country has its specificity. Labor is part of the equation but more important is the economic return and what needs to happen (including mechanization and other innovations) so that the agricultural systems can benefit from the SRI principles “to produce more with less”.

There are a number of tools and equipment that can facilitate the tasks, such as transplanting or direct seeding, and importantly weeding with manually pushed or motorized weeders. Developing and making appropriate equipment accessible for different farm-sizes, mechanization levels, and climate and soil conditions remains a challenge in many countries. That is why SRI-Rice wants to support an SRI equipment innovators exchange network, which allows innovators to exchange on designing, testing and using new equipment. The goal is to recommend equipment that is appropriate for specific farming situations, and providing information where the equipment can be accessed or acquired.


In Afghanistan field. Photo credit: Cornell SRI-Rice.

Q: Please tell us about studies using this system on wheat. Does it hold promise for wheat production?

SRI principles were applied to wheat first in India in 2005, but then also in Ethiopia and Mali since 2008, and more recently in Nepal. The idea to apply SRI principles to wheat came from SRI-rice farmers and technicians. In these countries, wheat is usually broadcast. Farmers changed the practices by direct seeding one or two seeds per hill planted in line, with about 15-20 centimeter spacing between the hills. Applying organic matter to soil and using a simple hand pushed weeder were the other practices adapted from SRI. The results were and are remarkable, with most often doubling of yields. Where traditionally, farmers would harvest 1.5-2.5 tons per hectare of wheat, with SWI farmers can reach 4-5 tons per hectare.

As wheat is often irrigated in the dry season, it is also possible to reduce the number of irrigations to the crop, as the organic matter improved soils retain the water longer. I have been personally associated with the introduction of SWI to Mali in the Timbuktu region, where I worked for 3 years between 2007-2010. The most impressive difference between SWI and traditionally grown wheat was the elongation of the panicles under SWI, which was almost doubled in size, and by producing fuller and larger grains.

In Northern India, Mali, Ethiopia, and Nepal wheat is a staple crop, mostly planted on small plots. Farmers bake their own chapatti or bread. With doubling yields with SWI, women farmers in Bihar were able to produce a 7-8 month of flour supply for their family, compared to 3-4 months previously. It also seems that SWI is easier to manage than SRI, so for instance in Northern India, the adoption rate is very high.


SWI-grown wheat at harvesting. Lalbojhi, Kailali, Nepal. 2011. Photo credit: Cornell SRI-Rice.

Q: If there are trials going on here in the U.S., can you briefly describe them to us?

SRI trials in the US have only recently started. They are not undertaken by the commercial large-scale rice growers, but by small organic farmers who are looking for ecological and productive innovations. We are aware of a number of tests in South Carolina in this 2013 growing season. We also know of a few organic vegetable farmers in New Jersey and New York who are growing rice for the first time in their environment this year.

Interest in the SRI methodology lies in being able to grow rice in non-flooded and aerobic soil conditions, which is also expected to reduce arsenic uptake for rice. Of course good productivity and producing a healthy crop are other incentives for these farmers to work with the SRI method. It will be interesting to evaluate this year’s trials.

Q: As your research has shown, where do you think the most promising areas are in using this system of crop growing including futuristic applications? Should home gardeners be adding it to their methods?

The SRI system and methodology can be applied to any crop and any system. The combination and application of the principles strives to optimize the resources available to the plant, to minimize stress for the plants, and to give each individual plant its room and environment where it can thrive best in. We are used to such an approach for high value crops but not for grain crops and other field crops. We also are aware today, with climate change and water scarcity in many locations, that the conventional paradigm of intensification that is based on ‘putting more to produce more’ is just not working
for us anymore.

SRI systems teaches us that we can “produce more by using less”. We should learn anew how to work WITH the plants and the environment for allowing them to express their best inherent potential! This has allowed farmers to return to heirloom and old varieties, as they become more productive under SRI and thus can become economically interesting again. SRI is about observation and paying attention to your crop, and it is one of many agro-ecological approaches, concentrating on crop production.

Others, to name a few, are: the integration of livestock with agriculture, conservation agriculture, and agroforestry. SRI is a knowledge-based approach, and once farmers have learned about the new principles, they can become more independent in improving their agriculture. It is fascinating to see the transformation of farmers, for instance in Mali, who have started working with SRI, becoming so much more confident and entrepreneurial in developing their own innovations. We need new approaches and we will not find them in single-bullets, but by working with the agro-ecological system and by putting plants and animals in their best environment.

Q: How much time is involved in training farmers to use this system? Are there any efficient training programs going on which may become a standard?

Ideally farmers are trained practically. This can be done in 3-4 days, where demonstration plots are put in place by the trainees and important practices exercised and discussed directly in the field. Ideally, training of trainer approach is pursued, where the trained farmer teaches other farmers in his or her community, therefore multiplying the outreach. It is advantageous, if the farming community or village community gets organized around how to spread the knowledge best among their fellow farmers.

To obtain the best impact is when a technician can follow up periodically with farmers for 1-2 cropping seasons, in order to adapt the SRI practices to the local farming conditions. Thus, training on SRI practices is knowledge intensive at first to have the best impact. Nevertheless, there are a lot of self-starters out there – who read about SRI and get it implemented. We have a large collection of technical guidelines and manuals on our website for many countries and many languages.

At SRI-Rice we are in the development of an approach for training and data collection that can be widely shared and accessed by anybody who is interested.

Q: Tell us about the research program on SRI-Rice at Cornell. What are your goals? How large is your staff?

The SRI International Network and Resources Center (or SRI-Rice) was established three years ago with support from Jim Carrey’s Better U Foundation (BUF), in response to the increasing importance of SRI practices – an environment-friendly, yield-increasing methodology — around the world. To date, significant productivity improvements have been achieved in over 50 countries.

Our mission is to advance and share knowledge about the System of Rice Intensification and to support networking among interested organizations and individuals around the globe. We would like to see any farmer worldwide being able to access information and obtain knowledge about the SRI system, allowing them to apply the gained knowledge to improve their cropping systems. We focus on improving food security and reducing poverty, therefore concentrate to work with smallholder farmers in Asia, Africa and Latin America.

We built and maintain the largest website on the System of Rice Intensification, which is updated daily. We report on the progress of 50 different countries, we maintain the most complete research database on SRI, we link to extension manuals in many languages, and we publish reports for partners who don’t have a web presence. We also have a large photo and video library.

Additionally, we contribute to analysis, identify trends and write about innovations that emerge from the field. We also support the networking at the global level by linking people and institutions with each other on a daily basis. Beyond that, we are currently developing larger initiatives that respond to identified priorities. These include developing a training and data monitoring approach that can easily be shared with and accessed by interested parties; and, developing and supporting regional initiatives in Latin America, West Africa and Asia.

We like to create regional communities of practice where people can exchange with each other, train and learn from each other, and work on location specific innovations with each other. We are currently in the launching process of the West Africa SRI Initiative, where SRI-Rice will provide technical support to 13 countries. For Latin America, we are currently building up communication in the Spanish language and identifying a community of interested partners. For Asia, it is a matter of linking the already strong national networks with each other for an improved multi-country exchange.

Two other priorities are the development of an international research network and the development of an international mechanization exchange network. We are currently two staff members with part-time support by a senior advisor. We work with students and leverage a lot of work through partners around the world. Our collaborations rely on demand-driven relationships with dedicated people. People, as well as students find us and we identify ways to collaborate, so that they can pursue their projects, research, or other activities.

Nevertheless, we are not enough staff given the high demand and considering what needs to be done. Also, we are not strictly a research program, but rather an outreach and extension program with research components, as indicated in our mission and activities.

Q: Anything you would like to add?

If anybody likes to start or has started working with the SRI methodology for rice or other crops anywhere in the world, or if anybody is interested in supporting SRI-Rice or other SRI activities, we would be happy to hear from you and be connected.

Contact me at eds8@ cornell.edu.

Thanks for the opportunity to share our work.

Kay McDonald: Thankyou very, very much for your time, Dr. Styger.

……………………………………………………………………………………………………….

Erika Styger is the Director of Programs for SRI-Rice at Cornell. She has a PhD in Crop and Soil Sciences from Cornell University and has over 20 years experience in designing, executing and evaluating research and development programs in Africa. She introduced SRI into four regions of Mali, adapting SRI principals to rainfed and lowland rice and wheat.

This video shows Dr. Styger speaking about SRI-Rice and also about how heirloom and indigenous varieties become more productive when planted with SRI methods.

Here is the home page at Cornell where you may learn more about SRI.

Also, there are many SRI-rice method informational videos available here.

Additional reading: “India’s Rice Revolution”.

Thirty-five Water Conservation Methods for Agriculture, Farming, and Gardening. Part 1.

Please note that this is the first of a special four-part series here at Big Picture Agriculture. One post will go up each of the next four days which will list and describe methods for producing “more with less” water use in farming.

Introduction
A leading concern facing the future of agricultural production is the availability of water. It is expected that climate change will cause more extreme climate events including droughts and floods and shifts in plant growing zones. As populations grow, more efficient use of water in growing food will be of key importance.

Today, some 2.8 billion people live in water-scarce areas, but by 2030, it is expected that about half of the world’s population will live in water stressed areas.

Past overuse of fossil water from aquifers will make it necessary to improve the efficiency of irrigation and rainfed agriculture methods to grow tomorrow’s food. The increasing competition for water in urban areas and for energy uses will lessen what is now available for agriculture, estimated to be 70 to 80 percent of global fresh water use. As other interests gain a share of the fresh water supply, the production of food will need to increase at the same time that the water used to grow it decreases.

Agriculture is done using both rainfed and irrigation farming. About 80 percent of globally cultivated land is done with rainfed farming, accounting for 60 percent of world food production. Using smart methods to enhance efficient and creative water use in rainfed agriculture has the potential to increase production. The majority of the world’s poor and hungry live on rainfed farms in South Asia and sub-Saharan Africa, so techniques which can improve water use in these regions are very valuable. While irrigation levels have declined since the 1970s for various reasons, irrigation has the potential to expand in the future in parts of Africa.

Productivity of irrigated land is more than three times that of unirrigated land. Around 40 percent of the world’s food is produced on the 20 percent of land which is irrigated. The monetary value of the yield of irrigated crops is more than six times that of unirrigated crops because crops with higher market values tend to be grown on irrigated land.

Many of the methods known to conserve water and use it efficiently have been practiced for thousands of years in some very arid regions of the world with great success. The best systems require little maintenance while yielding maximum results. The ability to add water during crucial growth periods can greatly increase crop yields.

To follow, is a list of water saving techniques which will be helpful in growing more food with less water. Because every parcel of land requires its own best unique solution, I hope readers find this post both useful and inspirational. Please feel welcome to add other methods not included on this list, in the comments below.
K.McDonald

1. Drip, or Micro-Irrigation


Drip irrigation delivers water (and fertilizer) either on the soil surface or directly to the roots of plants through systems of plastic tubing with small holes and other restrictive outlets. By distributing these inputs slowly and regularly, drip irrigation conserves 50 to 70 percent more water than traditional methods while increasing crop production by 20 to 90 percent. The water and fertilizer are also more easily absorbed by the soil and plants, reducing the risks of erosion and nutrient depletion.

Usually operated by gravity, drip irrigation saves both the time and labor that would otherwise be needed to water crops, leading to larger harvest yields. Small systems on timers can easily be set up by the home gardener, too.

This technology must be innovated and tailored to the crop and conditions. For example, some systems are now solar powered and tubing materials have changed. There are many styles of drip inserts which can be incorporated into the hoses and soaker hose segments can also be used. Instead of using plastic tubing, ceramic can be used as it is more porous.

Small stream diversions, water collection tanks, or holding ponds can be used to provide a gravity water supply for drip irrigation systems. Hand or peddle powered pumps or elevated buckets can also be used.

These micro-irrigation systems, while affordable, are less suitable for major rice growing areas or for staple grain growing. They are more suitable for high value vegetable gardens. Care should be taken to avoid the build-up of salts in drip-system soils.

Within the last two decades, the area irrigated using drip and other micro-irrigation methods has increased more than six-fold, to over 10 million hectares. The adoption of drip irrigation in more areas holds much hope for growing more food with less water.

2. Bottle Irrigation and Pitcher (Olla) Irrigation


Buried clay pot (olla) irrigation is an ancient technology that uses a logical idea. By burying a porous clay pot up to its neck, and filling it with water, a gardener has a 70 percent efficient watering system. Water weeps slowly out of the pot and moistens an area about one-half the diameter of the olla. Since soil is not saturated, the environment created is very healthy for the plant roots, which form a mat around the olla. (Many modern gardeners kill plants by overwatering.)

A perfect olla has a thick wall, is fired at a high temperature, has rough surfaces, and holds one quart to two gallons of water. After burying the pot and filling it with water, the top can be covered with a rock to keep it clean and prevent evaporation.

Depending upon the crop and the rainfall, filling the pots two to three times a week may be adequate.

To use an olla, place it in the middle of several plants so that the plants draw moisture from the center and grow outward onto dry land. This uses the space and the water very efficiently. Smaller ollas may be used to water containers or patio pots.

If the pots lose flow after many years of use, they can be soaked in vinegar to reopen pores. Always use clean or settled water and don’t add fertilizer so as not to clog the clay’s pores.

Here is a source from which to order ollas: http://growingawarenessurbanfarm.com/ollas

USING RECYCLED BOTTLES FOR MICRO IRRIGATION
To the left is one of many possible designs to aid in using a recycled bottle as a slow release pot or plant waterer. Wine bottles, plastic bottles, and almost any bottle will work. Holes can be tapped into plastic sides or lids, or commercial plastic spikes can be purchased which the bottle can be inserted into. Or, a bottle can simply be filled with water and inverted next to a plant into moist soil. Here is the source link for the wine bottle waterer: http://www.gardeners.com/ .

3. Zai Pits


Zai planting pits are hand dug holes about ten inches wide, ten inches deep, and three feet apart (25cm x 25cm holes one meter apart). They are used to trap water and increase soil fertility, especially in arid regions with degraded, crusty soils. The pits are planted with a mixture of crop residues, manure, and seeds, and covered with a mulch of grass or leaves.

When digging the pits, the excavated soil is used to make a small ridge around the pit to help capture rainfall.

The pits can be reused if silt and sand are removed annually.

This simple technique can increase the amount of crops that smallholder farmers produce by 50 percent after just three years.

Recommended video here.

4. Drought Tolerant Crops and Seeds


Grow the right crop for the growing region. Regions which suffer water shortages are wise to plant crops which are more tolerant to drought. These include finger millet, pearl millet, Guinea millet, cowpea, teff, lentils, amaranth, fonio, emmer, various sorghums, African rice, Ethiopian oats, irregular barley, mung beans and many grasses. Ideally, researchers would be working with all of the crops on this list to improve the seeds for our crop requirements of tomorrow.

For example, researchers have improved cassava varieties over the past four decades which can increase yields two to four-fold over traditional varieties.

Traditional millets require little water and can grow in poor soils without any synthetic fertilizers. Millet is a heat resistant crop which has high calcium and fiber content as well as essential amino acids.

In addition, drought tolerant crop seeds are available both through biotechnology and from native seed varieties. Examples of drought tolerant seeds available today include corn, rice, and cotton. Just as importantly, there are flood resistant rice seeds available. Having the right, reliable, and quality seeds in hand for a new planting season is of utmost importance.

5. System of Rice Intensification (SRI) or System of Crop Intensification (SCI) or System of Root Intensification (SRI)

Millions of smallholder farmers have found that by using SRI and SCI methods of farming, they can get higher yields with fewer inputs through setting up an environment with optimal conditions for the plant. The effect is to get crop plants to grow larger, healthier, longer-lived root systems, accompanied by increases in the abundance, diversity and activity of soil organisms. These organisms constitute a beneficial microbiome for plants that enhances their growth and health.

These principles, applied to growing rice in systems for 30-some years, are being successfully applied to growing vegetables, legumes, wheat, corn, finger millet, and sugarcane. The methods use 25 to 40 percent less water, and make crops more resilient to temperature and precipitation stresses. Crops can be productive with less irrigation water or rainfall because SRI or SCI conditions enhance the capacity of soil systems to absorb and provide water.

SRI methodology is based on four main principles that interact in synergistic ways:

● Establish healthy plants early and carefully, nurturing their root potential.

● Reduce plant populations, giving each plant more room to grow above and below ground and room to capture sunlight and obtain nutrients.

● Enrich the soil with organic matter, keeping it well-aerated to support better growth of roots and more aerobic soil biota.

● Apply water purposefully in ways that favor plant-root and soil-microbial growth, avoiding flooded (anaerobic) soil conditions.

To read more about the System of Rice Intensification, I recommend this article.

PLEASE RESPECT THIS COPYRIGHT AND DO NOT REPOST IT ELSEWHERE. YOU ARE ENCOURAGED TO LINK IT, HOWEVER.

(End of Part 1.)

35 Water Conservation Methods for Agriculture, Farming, and Gardening. Part 1.
35 Water Conservation Methods for Agriculture, Farming, and Gardening. Part 2.
35 Water Conservation Methods for Agriculture, Farming, and Gardening. Part 3.
35 Water Conservation Methods for Agriculture, Farming, and Gardening. Part 4.