Category Archives: super weeds

3 Picks: Canadian Surplus, UK Surplus, Amaranth Superweed

Below, are today’s three chosen agricultural-related news picks.

1) Canadian Prairie Crops Bursting at the seams this Season: By Jennifer Graham. “the highest all-wheat yield in the last 10 years was about 42 bushels per acre and this year it is expected to be about 49 bushels per acre. … Mr. Townsend said estimates are that the six major grains in Western Canada – wheat, oats, barley, rye, flax and canola – could produce 61.4 million tonnes this year. The previous nine-year average was about 47.7 million tonnes…”

2) Surplus Grains in the UK: “It is not just milling wheat which the UK (unlike most other countries) faces a surplus of. In oats too, the country has an unusually large surplus which is confronting farmers, and traders, with what Robert Leachman, oats trader at Gleadell, says is a ‘serious situation’ on how to find homes for the grain…”

3) Palmer Amaranth Super-weeds: By Kurt Lawton. “Before you run that combine through every acre of your fields, I’d highly recommend reading “Resistant Palmer amaranth hits the Midwest.” This weed is a game changer, and if left unchecked without multiple herbicide modes of control, you can literally lose a field in three years’ time.”

BONUS: Carole King — A Natural Woman’s Idaho property is for sale. (Photo above.)

This news post was written and compiled by K. McDonald.

Is Mechanical Flame Weeding for Crops Growing in Popularity?

Flame weeding using propane is a USDA approved organic weed removal method. It affords an opportunity for organic farmers to save time and money in their weed removal efforts. Furthermore, propane prices are currently reasonable, as shown by the following ten-year price graph.

There are a wide range of human and tractor powered flame-weeder models, many hand-built by the farmer. Individual propane tanks with hand held wands are quite common, as are human powered push carts which can be wider and span rows.

The flame weeder is used for pre-emergent and post-emergent weeding. It is particularly useful for small crops which are slow to germinate, like carrots and onions. Since it avoids cultivation, it is a no-till method of weed control.

Red Dragon is one company which has designed commercial equipment for industrial thermal weeding. This method uses an average of five gallons of propane per acre, or about half the cost of herbicide application.

Row crop flame weeding was used back in the 1930s, using kerosene. Research using the method has been done on 30 to 40 different crops, with good results. The goal is to rupture the weed plant cell walls, something that can be accomplished in one-tenth of a second with exposure to flame. The gas pressure and ground speed are used to control the heat exposure. It is most successful in use against small broadleaf weeds two-inches tall or at the 3-leaf stage. It works well on morning glories or bindweed. Flame weed control is less successful on grasses and perennial weeds. If necessary, repeat flaming three to five days apart is better than a one time heavy flaming.

The University of Nebraska is undergoing testing using mechanical flamers, and is hinting at a possible growing interest among conventional crop producers due to RoundUp weed resistance. They are working with manufacturers to make four-, six-, eight-, 10- and 12-row units.

Safety is important when using flame weed control. The method should be used on a dry day, but not in extreme dry conditions.

You may also want to check out this video of a tractor mounted flame weeder working a field of carrots.

An Evaluation of Benbrook’s Pesticide Use Study and Evolving Super Weeds

The study, “Impacts of genetically engineered crops on pesticide use in the U.S. — the first sixteen years” by Charles M Benbrook of Washington State University was published September 28th in peer reviewed “Environmental Sciences Europe 2012″. Reuters covered the report in this article: “Pesticide use ramping up as GMO crop technology backfires”. “Yes on 37 For Your Right to Know” advocates followed by publishing a press release titled “Damning New Study: GMOs Cause Massive Overuse of Pesticides; Data Sheds Light on Why Pesticide Companies Lead Opposition to Prop 37″.

The purpose of this post is to sort through the study’s strengths and weaknesses.

For background, Roundup ready soybeans were introduced in 1996 as the first HR (herbicide-resistant) crop. In 2011, an estimated 94% of the soybean area planted, 72% of corn, and 96% of cotton were planted to HR varieties, while about 65% of corn and 75% of cotton in the U.S. were planted to Bt varieties. See charts (below).

USDA Graph Showing Adoption of Genetically Engineered Seeds from 1996 through 2011 for Soybeans, Cotton, and Corn

Biotech Share of U.S. Corn Acres in 2011

Benbrook’s study looks credible in the reporting of pesticide use, but he never took into account crop yields in his results. It reports that between 1996 and 2011, herbicide use has increased while insecticide use decreased for a net gain in pesticide use of 404 million pounds, or about seven percent. Pesticide use is reported per acre, but the amount used per bushel of yield is ignored by the study.

The conclusion of the study is this:

Contrary to often-repeated claims that today’s genetically-engineered crops have, and are reducing pesticide use, the spread of glyphosate-resistant weeds in herbicide-resistant weed management systems has brought about substantial increases in the number and volume of herbicides applied. If new genetically engineered forms of corn and soybeans tolerant of 2,4-D are approved, the volume of 2,4-D sprayed could drive herbicide usage upward by another approximate 50%. The magnitude of increases in herbicide use on herbicide-resistant hectares has dwarfed the reduction in insecticide use on Bt crops over the past 16 years, and will continue to do so for the foreseeable future.

I’d like to first comment on his results and conclusion (above).

1. Within the report, Benbrook appropriately cites the application of herbicides per acre. But telling us how many pounds gain in use of pesticides since the introduction of HR crops were introduced in 1996 falls short by not taking into consideration crop yields.

2. In Benbrook’s conclusion, he shows that GE crops have led to a larger use of pesticides when we were promised they would use less, especially since pesticide resistance has evolved. The claim that I am more familiar with is that glyphosate is a less toxic chemical than those herbicides used previously. After-all, HR seed technology, by definition, requires application of the herbicide glyphosate. Additionally, when I did average yield calculations (below) for corn and soybeans, results suggested that the time period of Benbrook’s 16-year study did use fewer pesticides when yield was taken into account.

3. The main point of Benbrook’s conclusion is that glyphosate-resistant weeds will require an increase in pesticide use. An obvious exception to this would be the increased hand-removal of weeds from fields which is already happening. Today’s growing weed and pest resistance to pesticides is causing a return to the use of the original and more toxic chemicals such as 2,4-D and the promotion of GE seeds with more stacked traits and higher concentrations of Bt. This is of great concern to everyone and he does a good job covering this emerging story. Weed-resistance has huge implications and it has been in the news repeatedly over the past several years, so in that sense this study presents nothing new. There are many unknowns surrounding future crop production and crop production methods as a result of pesticide resistance and his overview of today’s situation towards the end of the study is worth reading.

In his study, this paragraph tells us that pesticide use is increasing with each passing year of GE crop use:

Taking into account applications of all pesticides targeted by the traits embedded in the three major GE crops, pesticide use in the U.S. was reduced in each of the first six years of commercial use (1996–2001). But in 2002, herbicide use on HR soybeans increased 8.6 million kgs (19 million pounds), driven by a 0.2 kgs/ha (0.18 pounds/acre), increase in the glyphosate rate per crop year, a 21% increase. Overall in 2002, GE traits increased pesticide use by 6.9 million kgs (15.2 million pounds), or by about 5%. Incrementally greater annual increases in the kilograms/pounds of herbicides applied to HR hectares have continued nearly every year since, leading to progressively larger annual increases in overall pesticide use on GE hectares/acres compared to non-GE hectares/acres. The increase just in 2011 was 35.3 million kgs (77.9 million pounds), a quantity exceeding by a wide margin the cumulative, total 14 million kg (31 million pound) reduction from 1996 through 2002.

The above paragraph suggests that with increased HR crop acres, there is a corresponding increase in the use of glyphosate. That would certainly be expected, would it not? Most resistant weeds weren’t documented until 3-4 years after 2002, so I find his mixing of these figures and timeline confusing. It would have been valuable if the study had included a timeline of the rate of adoption for each GE crop for a baseline of comparison to pesticide use. (See weed reference list link)

Taking into Account Crop Yields
Using this USDA chart as my reference, I averaged the corn yield per bushel for the 16 years leading up to 1996, and compared that yield to the yield during the 16 years of Benbrook’s study, 1996 through 2011. From 1980 through 1996, I came up with an average yield of 110 bushels of corn per acre. From 1997 through 2011, the average yield was 143 bushels of corn per acre, a 30 percent increase. A few variables worth mentioning that are not taken into account are weather, an increase in irrigation, advancements in machinery, and the rate of adoption of HR varieties of corn by year. Yet, one can see that the yield increase is far greater than the seven percent of Benbrook’s reported increase in pesticide use during this study’s sixteen-year time period.

Doing the same exercise for soybeans and using a yield chart from Iowa State, from 1980 through 1996 the average U.S. soybean yield was 30 bushels per acre. From 1997 through 2011 the average yield was 40 bushels per acre. This is a 33 percent increase during the time period of Benbrook’s study, again, clearly well-above the seven percent increase in pesticide application that he cites in the results of his study.

Resistant Weeds
This chart from WeedScience.org lists the 24 glyphosate-resistant weeds, when they were first seen, and which states they inhabit. Perhaps two of the worst problems right now are the glyphosate-resistant Palmer amaranth in cotton and Bt resistant western corn rootworm. Last year, 500,000 cotton acres in Georgia were weeded by hand for pigweed (Palmer amaranth). On a personal note, my own family had to hoe marestail out of soybean fields this year on our farm in Northeast Nebraska. Glyphosate resistant weeds are becoming ubiquitous across U.S. corn, soybean, and cotton cropland — spanning millions of acres.


Deere Boom Sprayers can span 100 feet or more

Conclusion
Overuse and unregulated management of crops using glyphosate and Bt genetically modified technology has greatly contributed to these emerging resistant weeds and pests. Mandated ethanol use has driven up corn prices and resulted in unrotated corn on corn acres, where rootworm resistance is seen. An aging farmer demographic along with depopulation of the rural areas are conditions which have embraced the use of genetically modified technology which has saved labor while also enabling operators to work off-farm for income. Custom boom sprayers spanning 100-feet or more have done the work of weed-removal. Aerial spraying of pesticides continues to be widely used. The no-till which is practiced by using Roundup saves fuel costs and labor.

When one puts all of these facts together it is worth wondering whether we are nearing the end of the easy years of crop production in the U.S., the end of industrial agriculture as we know it. Will there be a decrease in crop yields? Could this kill the biofuels programs? Will farms need to become smaller again so that farmers can manage weeds? Will teenagers (or migrant laborers) be employed by roguing corn and bean fields? So far, Monsanto has not been very informative about its outlook concerning this issue. In Ag decision-making, in the end, it always comes down to economic viability and policy. At least for the short term, it looks as if more expensive and more hazardous chemical inputs will continue to increase in use for corn, soybeans, and cotton because of pesticide resistance which is growing at an alarming rate.